If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+178x+169=0
a = 9; b = 178; c = +169;
Δ = b2-4ac
Δ = 1782-4·9·169
Δ = 25600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25600}=160$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(178)-160}{2*9}=\frac{-338}{18} =-18+7/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(178)+160}{2*9}=\frac{-18}{18} =-1 $
| 10x^2-37x-21=0 | | 8x-8=5x+25 | | 5x+2=7x+1 | | (2x+3)/2=4x+1 | | 2x-(1-x)=5 | | 2*(x+4)=5+8x | | 3-3x=2+5x | | 2x+1=7x+8 | | x/2+(2/2-6/2)=0 | | 0.7x-1.8=0.2 | | -2x-4=0.5x+5 | | 22x^2+33x-265=0 | | 1/3+1/9(k+5)-k/4=2 | | 22n^2+33n-265=0 | | 6y+2(y-3)=3(y+1)-2 | | 1/3+1/9(k+5)-k/5=2 | | 5x-6/x=-33-4x | | -3x+0-(-3)=0 | | x2-14x+120=0 | | 18=6x+6+2x | | -3x+0=-3 | | 4x+15=55−4x | | 6x+6+2x=18 | | (1/6)(10-x)=2 | | 2a+1/2=1/4 | | -2=(1/6)(10-x)=2 | | t(t+3)=t2+9 | | (1/6)(10-x)=0 | | -5/2x+4=-11 | | -3*0+y=-3 | | X+x+2+x+4=42 | | -0.5x+0=-8 |